Handcycling: a biophysical analysis

PhD thesis of Ursina Arnet

Mini-Symposium, Utrecht 18. 10. 2013

Background of the study

Problem: high prevalence of shoulder pain:

- persons with SCI: 30 73% (Ballinger 2000)
- general population: 7 27% (Luime 2004)

Most common cause of shoulder pain: overuse injuries to the rotator cuff, impingement syndrome

Overuse injuries to the shoulder

Shoulder load and SCI

Possible etiology:

- Repetitive forces acting on the shoulder joint (Kulig 1998)
- High peak forces applied to the push rim (Boninger 2003) and high moments acting on the shoulder joint (Mercer 2006)

Shoulder load and SCI

Lower the shoulder load

- power wheelchair
- optimization, adjustment of wheelchair
- training

 different propulsion mechanism: lever propulsion, handcycling

Aim of the thesis:

To analyze the physical stra its accompanying mechanic

ency of handcycling and ne shoulder complex.

Thesis

Main aspects:

- 1. handcycling: testing and measuring
- 2. handbike vs. handrim wheelchair propulsion
- 3. the optimal setup of the handbike

1. Handcycling

Aim: to get a baseline knowledge of handbike propulsion and its reaction to different test situations.

1. Handcycling

- Validation study: background on technical details and accuracy of measured forces ¹.
- Influence of exercise conditio speed and method to impose
 - \rightarrow effect of speed, no effect of

¹ van Drongelen et al. Development and validity of an instrumented handbike: initial results of propulsion kinetics. Med Eng Phys 2011: 1167-1173

² Arnet et al. Are the force characteristics of synchronous handcycling affected by speed and method to impose power? Med Eng Phys 2012: 78-84

³ Arnet et al. Propulsion style and mechanical efficiency during handcycling at different power outputs. Submitted to the Journal of Sports Sciences

2. Handbike vs. Wheelchair

Aim: to identify if the handbike is a good alternative mobility device with respect to shoulder load.

Quantification of shoulder load:

- applied hand forces
- shoulder moments
- glenohumeral contact forces
- muscle forces

Hand forces

Total applied hand force

Wheelchair

Handbike

Hand forces

Total applied hand force

Wheelchair: 4% incline, 51 W

Handbike: lower peak and mean forces ⁴ → indication for lower shoulder load

⁴ Arnet et al. Force application in handcycling and handrim wheelchair propulsion: an initial comparison. Submitted to Journal of Applied Biomechanics

2. Handbike vs. Wheelchair

Quantification of shoulder load:

- applied hand forces: HB < WC
- shoulder moments
- glenohumeral contact forces
- muscle forces

Shoulder moments

Moment = force x lever arm

Shoulder moments

Wheelchair: 4% incline, 51 W

Handbike: lower peak and mean moments ⁴

⁴ Arnet et al. Force application in handcycling and handrim wheelchair propulsion: an initial comparison. Submitted to the Journal of Applied Biomechanics

2. Handbike vs. Wheelchair

Quantification of shoulder load:

- applied hand forces: HB < WC
- shoulder moments: HB < WC
- glenohumeral contact forces
- muscle forces

Musculoskeletal model

Delft Shoulder and Elbow model: 31 muscles, bones, ligaments

 Inverse dynamic minimum stress/energy cost function maximal force per physiological cross section = 100N/cm²

Input: External forces applied by hand
 Orientation of thorax, clavicle,
 scapula, humerus, forearm, hand

Musculoskeletal model

Bielensatics derientated mover through clavicle, scapula, humerus, §9reauscles, bones, ligaments

 Inverse dynamic minimum stress/energy cost function maximal force per physiological cross section = 100N/cm²

Input: External forces applied by hand
 Orientation of thorax, clavicle,
 scapula, humerus, forearm, hand

Musculoskeletal model

Delft Shoulder and Elbow model: 31 muscles, bones, ligaments

 Inverse dynamic
 minimum stress/energy cost function maximal force per physiological cross section = 100N/cm²

Input: External forces applied by hand
 Orientation of thorax, clavicle,
 scapula, humerus, forearm, hand

•Output: GH joint reaction force relative muscle forces

Wheelchair: 55W

Handbike: lower peak and mean forces ⁵

⁵ Arnet et al. Shoulder load during synchronous handcycling and hand rim wheelchair propulsion in persons with paraplegia. Journal of Rehabilitation Medicine 2012: 222-228.

2. Handbike vs. Wheelchair

Quantification of shoulder load:

- applied hand forces: HB < WC
- shoulder moments: HB < WC
- glenohumeral contact forces : HB < WC
- muscle forces

Rotator cuff: supraspinatus, infraspinatus, subscapularis, teres minor

stabilization of shoulder joint

Muscle forces

Handbike: lower peak and mean muscle forces, mainly on rotator cuff ⁵

⁵ Arnet et al. Shoulder load during synchronous handcycling and hand rim wheelchair propulsion in persons with paraplegia. Journal of Rehabilitation Medicine 2012: 222-228.

2. Handbike vs. Wheelchair

Quantification of shoulder load:

- applied hand forces: HB < WC
- shoulder moments: HB < WC
- glenohumeral contact forces: HB < WC
- muscle forces: HB < WC
- → The handbike is favorable to the handrim wheelchair for outdoor mobility and exercise and it has the potential to reduce overuse injuries to the shoulder.

3. Handbike Setup

optimal position?

aim:

- Performance \rightarrow high efficiency, low air resistance
- Recreation, health maintenance \rightarrow low shoulder load

3. Handbike Setup

Aim: to identify the setup of the handbike where the shoulder load is the lowest.

Analyzed variables:

- backrest inclination
- crank position
 - (height and distance)

Protocol

		Trial name	backrest	crank distance	crank height
			inclination	(elbow angle)	
Crank	position	close, high	60°	35°	shoulder height
		close, low	60°	35°	shoulder height -15% arm length
		distant, high	60°	15°	shoulder height
		distant, low	60°	15°	shoulder height -15% arm length
Backrest	inclination	60°	60°	15°	shoulder height -15% arm length
		45°	45°	15°	shoulder height -15% arm length
		30°	30°	15°	shoulder height
		15°	15°	15°	shoulder height +15% arm length

Protocol

	Trial name	backrest	crank distance	crank height
		inclination	(elbow angle)	
	close, high	60°	35°	shoulder height
h noi	close, low	60°	35°	shoulder height -15% arm length
Cra	distant, high	60°	15°	shoulder height
	distant, low	60°	15°	shoulder height -15% arm length
	60°	60°	15°	shoulder height -15% arm length
rest ation	45°	45°	15°	shoulder height -15% arm length
ack clina	30°	30°	15°	shoulder height
<u>ם</u> . מ	15°	15°	15°	shoulder height +15% arm length

Measured outcome

- glenohumeral contact forces
- muscle forces
- mechanical efficiency (ME):
 ME = (power output / energy consumption*) ·100%
 - * calculated with O₂ consumption and respiratory exchange ratio

Backrest inclination

Glenohumeral contact force

* = significant differences between setups

Backrest inclination

* = significant differences between setups

Backrest inclination

Mechanical efficiency

upright backrest position: less shoulder load ⁶

 \rightarrow air resistance

⁶ Arnet et al. The effect of crank position and backrest inclination on shoulder load and mechanical efficiency during handcycling. Submitted to the Scandinavian Journal of Medicine and Science in Sports.

Crank position

Glenohumeral contact force

* = significant differences between setups

Crank position

* = significant differences between setups

Crank position

distant crank position: less load on the subscapularis ⁶

* = significant differences between setups

⁶ Arnet et al. The effect of crank position and backrest inclination on shoulder load and mechanical efficiency during handcycling. Submitted to the Scandinavian Journal of Medicine and Science in Sports.

Optimal position

upright backrest (inclination = 60°) distant crank position (elbow angle = 15°)

Conclusion

All in all the handbike is preferred for outdoor mobility over the manual handrim wheelchair. With an optimal adjustment to its user, the increased use of the handbike can prevent overuse injuries and improve the physical fitness and mobility of wheelchair dependent persons.

Thanks for the attention!

Questions?

Point of contact of the glenohumeral contact force

